Quantum machine learning: a classical perspective
نویسندگان
چکیده
Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.
منابع مشابه
Quantum-enhanced machine learning
The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all t...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملAn efficient quantum algorithm for generative machine learning
A central task in the field of quantum computing is to find applications where quantum computer could provide exponential speedup over any classical computer [1–3]. Machine learning represents an important field with broad applications where quantum computer may offer significant speedup [4–8]. Several quantum algorithms for discriminative machine learning [9] have been found based on efficient...
متن کاملEquivalences and Separations Between Quantum and Classical Learnability
We consider quantum versions of two well-studied models of learning Boolean functions: Angluin’s model of exact learning from membership queries and Valiant’s Probably Approximately Correct (PAC) model of learning from random examples. For each of these two learning models we establish a polynomial relationship between the number of quantum versus classical queries required for learning. These ...
متن کاملLearning architectures based on quantum entanglement: a simple matrix product state algorithm for image recognition
It is a fundamental, but still elusive question whether methods based on quantum mechanics, in particular on quantum entanglement, can be used for classical information processing and machine learning. Even partial answer to this question would bring important insights to both fields of both machine learning and quantum mechanics. In this work, we implement simple numerical experiments, related...
متن کامل